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Abstract-This paper argues that trust and reputation models 
should take into account not only direct experiences (local trust) 
and experiences from the circle of "friends", but also be attack 
resilient by design in the presence of dishonest feedbacks and 
sparse network connectivity. We first revisit EigenTrust, one 
of the most popular reputation systems to date, and identify 
the inherent vulnerabilities of EigenTrust in terms of its local 
trust vector, its global aggregation of local trust values, and 
its eigenvector based reputation propagating model. Then we 
present EigenTrust+ +, an attack resilient trust management 
scheme. EigenTrust++ extends the eigenvector based reputation 
propagating model, the core of EigenTrust, and counters each 
of vulnerabilities identified with alternative methods that are by 
design more resilient to dishonest feedbacks and sparse network 
connectivity under four known attack models. We conduct 
extensive experimental evaluation on EigenTrust++, and show 
that EigenTrust++ can significantly outperform EigenTrust in 
terms of both performance and attack resilience in the presence 
of dishonest feedbacks and sparse network connectivity against 
four representative attack models. 

I. INTRODUCTION 

Reputation and trust management continue to play an active 
role in collaborative computing for a broad range of applica­
tions, ranging from cloud computing, decentralized network 
computing, mobile services to social networks and online 
communities. A common challenge facing these collaborative 
systems is how to effectively collaborate in accomplishing 
tasks while mitigating the attacks (threats) throughout col­
laboration. This is because participants in most collaborative 
systems may have little knowledge about other participants 
with whom there is no prior interaction or transactional experi­
ences. Reputation-based trust management has been used as an 
effective service selection criterion to evaluate how much one 
can trust others in these collaborative systems [3], be it cloud 
service provisioning, mobile conunerce and entertainment, or 
social computing, crowd sourcing and social networks. 

Trust is often considered as a personal and subjective 
measure because it is computed primarily based on a set of 
personalized or subjective factors or evidence, some of which 
carry more weight than the others for different entities. Fur­
thermore, an individual's subjective trust can be derived from a 
combination of personal experience and received referrals. On 
the other hand, reputation is often considered as a collective 
measure of trustworthiness based on the referrals or feedback 
ratings from members in a community [6] based on their 
transactional experiences or direct interactions. Reputation 
can be seen as a conununity-wide trust measure obtained 

by integrating the personal experiences of many members 
in the given context within the community. Reputation can 
be aggregated into a single value that represents what the 
community as a whole thinks about a particular participant 
(e.g., a service provider, a mobile node, a social network 
member) [17]. By collecting, distributing and aggregating the 
feedbacks about a participant's past behaviors, the reputation 
trust metrics can help participants to decide whom to trust, 
encourage trustworthy behavior, and deter participation by 
those who are unskilled or dishonest [10] [18]. 

Reputation trust has shown to be beneficial in many eCom­
merce applications where a large number of participants are 
involved, be it consumer or producer, and many of them do 
not have prior interaction or experience with one another. eBay 
and Amazon are two popular and representative Web services 
that utilize reputation trust to rank participants [2]. Most of 
the Reputation systems to date are built on the belief that 
the efforts of attempting to identify malicious participants that 
may disturb an operational system by providing inauthentic 
contents or bad services are more effective than the efforts of 
attempting to identify inauthentic contents and bad services. 
This is because malicious participants can easily generate a 
virtually unbounded quantity of inauthentic contents or bad 
services if they are not identified, banded from, or constrained 
in the daily operational system [18] [7]. 

Trust and reputation management have been an active 
research area over the last decade. Most of the existing 
research has developed trust and reputation computational 
models by utilizing formal methods, such as fuzzy logic 
theory [13] [11], Bayesian network [15], subjective logic [4] 
[5], social cognitive methods [1] [8], and game theory [9] 
[16]. EigenTrust [7] is one of the most popular reputation 
management models to date. It computes the level of trust that 
a system places on a participant based on the normalized local 
trust vector of the participant and its eigenvector, enabling 
the reputation computation and establishment of a participant 
through direct experiences and feedbacks as well as indirect 
experiences obtained through its circle of "friends". We use 
"friends" of a participant to refer to those other participants 
with whom this participant has had direct or indirect inter­
action or transaction relationship. Participants connected by 
such transactional relationship form a collaboration network 
or "friendship" network. For each participant, its circle of 
friends refer to those participants that can be reachable from 
this participant in the "friendship" network by following the 
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friendship relationships that it has with its direct and indirect 
friends. 

In this paper we argue that reputation based trust should 
be attack resilient. By attach resilient, we mean that (i) the 
reputation of a good participant should stay strong even in 
the presence of malicious participants, (ii) new participants 
should be able to built their reputation over time, and (iii) 
the reputation of a malicious participant should be dropped 
sharply once he is found to be dishonest or misbehave, for 
example, by generating inauthentic contents or providing bad 
services beyond the commonly accepted baseline. We argue 
that even though EigenTrust is the first trust model that 
identifies and utilizes the circle of friends as an effective way 
to handle sparse friendship connections in a large network 
of participants, it suffers from a number of detrimental vul­
nerabilities. First, it is vulnerable in the presence of the co­
existence of malicious participants with dishonest feedback 
ratings (referrals) from a small number of normal (good) 
participants. Second, its iterative computation model based 
on eigenvector propagates trust uniformly to all its friends, 
making EigenTrust vulnerable to the sparse networks with 
some sub-network(s) dominated by malicious participants or 
dishonest raters. Finally, we argue that the simple local trust 
formula used by EigenTrust, though capturing the quantitative 
difference between the number of satisfactory transactions and 
the number of unsatisfactory transactions between a pair of 
participants, fails to reflect the total number of transactions 
that the pair of participants have had, enabling malicious 
participants to manipulate the EigenTrust system at low cost. 

In this paper, we first analyze when EigenTrust is effective 
and when it may fail badly. Based on the analysis, we present 
the design of EigenTrust+ +, the attack resilient reputation 
trust management for a collaboration network. EigenTrust++ 
enhances the attack resilience of EigenTrust from three core 
aspects. First, EigenTrust++ makes a clean separation of 
transactional experience based reputation from feedback re­
ferral based reputation to increase the attack resilience in 
the presence of dishonest feedbacks. Second, EigenTrust++ 
removes the uniform trust propagation model in the repu­
tation computation and instead introduce a linear threshold 
based probabilistic trust propagating model, with personalized 
similarity as the edge weights. This allows EigenTrust++ to 
activate the trust propagation from a participant to only those 
of its neighbor participants which have similar transactional 
and feedback behavior. Thus, EigenTrust+ + makes it much 
harder for malicious participants to gain trust from (be acti­
vated by) good peers, and enables good participants to share 
their experiences and feedbacks with their circles of the friends 
that have similar transactional and feedback behaviors. By 
making the trust propagation model more attack resilient in 
the presence of dishonest feedbacks, sparse networks and large 
number of malicious peers, EigenTrust++ can significantly 
cut down the propagation paths from good peers to malicious 
peers. Third but not the least, EigenTrust++ also strengthens 
the attack resilience of the local trust value by incorporating 
the total number of transactions performed between a pair 

of participants in addition to the difference between satisfied 
and unsatisfied number of transactions. We conduct extensive 
experimental evaluation of EigenTrust++ in terms of its effec­
tiveness against four representative threat models with varying 
percentages of dishonest feedbacks. 

The rest of this paper is organized as follows. Section II 
gives an overview of the core components of EigenTrust, 
identifies its inherent vulnerabilities and analyzes the root 
causes of such vulnerabilities. We describe EigenTrust++ 
in Section III, report our experimental evaluation results in 
Section IV, discuss related work and conclude in Section V. 

II. EIGENTRUST AND ITS INHERENT 
V ULNERABILITIES 

In this section we first give a brief review of EigenTrust 
and the four popular threat models introduced by Eigen­
Trust to make the paper self-contained. Then we analyze the 
vulnerabilities inherent in EigenTrust from local trust value 
computation, global trust aggregation and the problem of using 
uniform probability distribution in its eigenvector based trust 
propagation model and outline the design of EigenTrust++. 

A. EigenTrust Overview 

EigenTrust is a simple and intelligible reputation manage­
ment system with three core components, local trust value, 
aggregation of local trust value into global reputation score, 
and hop based trust propagation that converges to the principal 
left eigenvector through uniform distribution of propagation 
probability. 

In most reputation systems, participants (peers) interact with 
one another to provide services, be it query-answering or 
tweeting or blogging. Thus, we refer to the participant who 
requests a service as client or consumer and the participant 
who offers the service as the server or producer. Upon the 
completion of a transaction between a pair of participants, 
the consumer peer will rate the producer peer in terms of its 
transaction quality, denoted by tr( i, j), initialized to zero. In 
EigenTrust, a peer i may rate the transaction it has with peer 
j as positive by tr(i,j) = 1 or negative by tr(i,j) = -1. 

The transaction based local trust from peer i to peer j, 
denoted by Sij, is defined in EigenTrust as the difference 
between satisfactory transactions, sat(i,j), and unsatisfactory 
transactions, unsat( i, j), between peer i and peer j. Namely 
sij = sat( i, j) - unsat( i, j). To prevent malicious peers to 
assign arbitrarily high local trust values to other malicious 
peers, and arbitrarily low local trust value to good peers, a 
normalized local trust value that peer i has over peer j, denoted 
by Cij, is used in EigenTrust, which normalizes Sij by the 
maximum satisfactory score from all peers who have had the 
direct transactional experiences with peer i as follows: 

.. - max(sij ,0) 
·f'" ( 0) --I- 0 c') - '" ( . 0)' z �k max Sik, r 

Lk max S'Lk, 

Cij = Pj Otherwise 
EigenTrust uses the normalized local trust value Cij as 

the initial trust for each pair of participants who have direct 
transactions or interactions. When a peer i does not have any 
transaction with anyone in the system, we have Sij =0 for any 
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j and set Cij = Pj, where Pj = lJ lPI  if j E P otherwise Pj 
= O. P is a set of pre-trusted peers and is used as the central 
authority of the system. Otherwise, Sij is normalized by using 
the sum of the local trust values of all neighbors of peer i as 
the denominator. 

Let n denote the total number of participants in the system, 
we can define C as the matrix [Cij] with n rows and n columns. 
Let fk+l denote the global reputation trust vector of size 
n to be computed at k + 1 round of iterations. We define 
fk+l 

= (1 - a)CTfk + ap, where a is the probability of 
a peer knows none and thus relies on the pre-trusted peers, 
and denotes the initial trust vector with only pre-trusted peers 
having the reputation value of 1/1P1. Alternatively, a peer 
i's reputation at (k+ l)th iteration can be defined by the sum 
of the local trust values that other peers have given to i, 
weighted by their trust score at the kth iteration, namely 
t;k+l) = (1 - a)(c1itik) + ... + cnit�k)) + api' 
B. Threat Models and Trust based Service Selection Methods 

One way to evaluate the reputation trust models is to 
measure its resilience to different attack strategies of malicious 
participants. The following six threat models are documented 
in EigenTrust [7]. 

Threat Model A. Independently Malicious. Malicious peers 
are independent and not initially aware of other malicious 
peers and simply upload inauthentic files or provide bad 
services. 

Threat Model B. Chain of Malicious Collectives. Malicious 
peers know each other upfront and deterministically give 
a high local trust value, say 1, to another malicious peer, 
resembles a malicious chain of mutual high local trust values. 
Malicious peers always provide an inauthentic file or bad 
service when selected as download source or service provider. 

Threat Model C. Malicious Collectives with Camouflage. 
Malicious peers try to get some high local trust values from 
good peers by providing authentic files in f% of all cases 
when selected as download sources or service providers. 

Threat Model D. Malicious Spies. Malicious peers are 
strategically organized into two groups. One group of mali­
cious peers (type D) try to act as normal peers in the network 
and try to increase their global reputation by only providing 
authentic files or good services, and uses the reputation they 
gain to boost the trust values of another group of malicious 
peers (type B) who only provide inauthentic files or bad ser­
vices when selected as download sources or service providers. 

Threat Model E. Sybil Attack. A malicious peer initiates 
thousands of peers in the network. Each time one peer is 
selected for download or as a service provider, it sends an 
inauthentic file or provides a bad service and then disconnect 
and replaced with a new identity. 

Threat Model F. Virus-Disseminators. A malicious peer 
sends one inauthentic virus infected file every 100th request. 
All other times, it sends an authentic file. This is a variant of 
Threat Model C. 

Figure 1 shows the performance of EigenTrust in Threat 
Models A, B, C and D. 
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Fig. 1 .  EigenTrust Performance in Threat Models A, B, C and D 

Deterministic v.s. Probabilistic Service Selection. Given 
a query service request (say download of a particular piece of 
music) and a subset R of peers with matching results, there are 
two reputation based service selection criterions to choose a 
peer with high reputation to serve. The deterministic algorithm 
chooses the peer that has the highest reputation among those 
responding peers as the download source. The probabilistic 
algorithm chooses a peer i as download source according to 
the trust based probability til 2::=0 tj, ensuring that a peer 
with higher reputation score will have higher probability to be 
selected. To do this, a decimal in interval [0,1] needs to be gen­
erated randomly, then, this decimal is utilized to compare with 
the trust base probability of response peer i, if the probability 
is bigger than this decimal, peer i would be selected as service 
provider, if not, another response peer is chosen and compared 
again. In EigenTrust, the probabilistic algorithm is used as 
the reputation-based service selection method, augmented by 
the following refinement: with the default probability of 10%, 
EigenTrust selects one of those peers whose reputation values 
are zero as the download source [7]. The refined probability­
based selection gives new participants some chance to build 
up reputation, and at the same time prevents the system from 
overloading peers with high reputation scores. 

C. Vulnerabilities Inherent in EigenTrust 

We examine vulnerabilities inherent in the EigenTrust 
model: Local Trust Rating, Feedback Credibility, and Unifonn 
Trust Propagation Distribution. 

Local Trust Rating. The local trust value in EigenTrust is 
defined as Sij = sat( i, j) -unsat( i, j), which is the difference 
between the number of satisfactory transactions peer i has 
had with peer j and the number of unsatisfactory transactions. 
Unfortunately, this formula suffers from a number of vulner­
abilities. Consider the following three scenarios: (a) peer i 
has 10000 satisfactory and 9980 unsatisfactory transactions 
with j1; (b) peer i has 100 satisfactory and 80 unsatisfactory 
transactions with peer j2; (c) peer i has 20 satisfactory and 
o unsatisfactory transactions with j3' Clearly by the formula 
above, we have that Sijl = Sij, = Sijs = 20, namely, their 
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local trust values are equal. However, it is obvious that the 
behavior of peer j3 is much better than that of j2, and the 
behavior of j2 is better than that of jl to some extent. A 
cause for such vulnerabilities is the lack of consideration on 
how the total number of transactions may enhance the attack 
resilience of EigenTrust local trust computation. 

Feedback Credibility. Figure1 shows that EigenTrust is 
effective in the presence of varying percentage of malicious 
peers up to 70% in Threat models A and B where either mali­
cious peers are independently malicious or forms a malicious 
chain of high feedback ratings but only somewhat effective 
when malicious peers are up to 20-40% in Threat models C 
and D. However, these measurements are conducted under the 
assumption that good peers are good for both transactions and 
referrals, which is unrealistic in practice. For instance, a peer 
may make false statements about another peer's service due 
to jealousy or other types of malicious motives. Consequently, 
a trustworthy peer may end up getting a large number of 
false statements and its reputation is evaluated incorrectly 
even though it provides satisfactory service in every trans­
action [18]. We argue that the effectiveness of a reputation 
trust should be resilient in the presence of varying dishonest 
feedback percentage (DFP) by good peer, namely with certain 
probability, peers performing good transactions may provide 
dishonest feedbacks. 

Figure 2 shows the measured EigenTrust efficacy in terms of 
inauthentic downloads under different DFP settings from zero 
to 40% for Threat Models A and B with the percentage of ma­
licious peers up to 70%. Both Figure 2(a) and Figure 2(b) are 
the measurement results of EigenTrust with the probabilistic 
selection method using the same simulation setup as [7]. When 
the DFP is set to 0%, all good peers give honest feedback 
ratings, we measure EigenTrust and obtain the almost same 
results as reported in [7] for both non-trust case and EigenTrust 
DFP=O% (shown in the first two blue bars under each fraction 
of malicious peers). However, when the DFP changes from 
10% to 40%, the fraction of inauthentic downloads goes up 
quickly and proportionally. More interestingly, the fraction of 
inauthentic downloads is higher than the non-trust case for 
EigenTrust when the DFP reaches 40% and the malicious 
peers are from 10% to 30% in Threat models A and B. 
This set of experiments shows some serious vulnerabilities 
of EigenTrust in the presence of dishonest feedbacks for 
good peers. With the increase of malicious peers, for non­
trust case in which a consumer randomly select a service 
providers without referring to reputation measurement, the 
probability that malicious peers are selected as download 
sources would become large proportionally. Thus, the fraction 
of inauthentic downloads should rise as well. This is the reason 
why EigenTrust only slightly improves over the non-trust case 
when the fraction of malicious peers is 40% or higher 70% 
but worse when the malicious peers are from 10% to 30%. 

Utilizing Circle of Friends. EigenTrust utilizes power 
iteration to compute the reputation value for each peer based 
on the normalized local trust matrix C. A large number of 
iteration rounds can guarantee the computation stability since 
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(b) Threat Model B based on Probabilistic Algorithm 

Fig. 2. The Fraction of Inauthentic Downloads in EigenTrust 

it converges to the left principle eigenvector of local trust 
matrix C. Although power iteration is effective for propagation 
based trust computation, one key challenge is to determine 
how many iterations should be implemented. 

Figure 3(a) shows an example network of 10 nodes, where 
nodes 0 and 1 are pre-trusted peers with initial reputation 
values 1/1P1. By the EigenTrust formula [(HI) 

= (1 -
a)CT[(k) + ap, we calculate reputation value for each node 
iteratively up to k = n = 100 rounds. Figure 3(b) illustrates 
the first three rounds of trust propagation process. In each 
iteration round, a node can compute its reputation based on the 
reputation values of those nodes from which it can be reached 
in one hop. At the same time, this node can propagate its 
reputation value to its direct neighbors. Consider this example 
network, at first, only nodes 0 and 1 have non-zero reputation 
value of 112. After finishing the 1st iteration, nodes 2 and 3 
receive trust values from nodes 0 and 1 respectively, and node 
5 receives trust values from the both nodes 0 and 1. Similarly, 
nodes 4, 6, 7 and 8 receive trust values after finishing the 2nd 
iteration. Node 9 would receive reputation propagation after 
the 3rd iteration. If the iteration round k is large enough, the 
computation will converge to the left principle eigenvector of 
matrix C. Figure 3(c) shows the simulation results with the 
parameter increment c set to 0.0001. 

Note that nodes 2, 6 and 7 form a chain with high weight 
value on each edge. This scenario corresponds to the threat 
mode C of malicious collectives with Camouflage: on one 
hand, they provide authentic files and gain positive local 
trust values, such as node 2 gets positive rating from pre­
trusted node 0 and node 5, and on the other hand, they 
always give exaggerated rating to their malicious neighbors 
and negative rating to good neighbor peers. Fig. 3(c) shows 
that the reputation values of nodes 2, 6 and 7 are increased 
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(a) Initial Graph with Weight (b) Trust Propagation 
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(c) Reputation with Increasing Iteration Rounds 

Fig. 3. EigenTrust Reputation Propagation Model 

visibly, while the other peers' reputation values decline as we 
increase the number of iterations. This clearly violates the 
goal of reputation trust management, which is to promote the 
reputation of good peers and reduce the reputation of malicious 
peers. 

� 035 

1 0.3 

j 025 

� 02 j 0.15 

----== � - + - :- - : - -: - � - + - :- - : - -: - � - + - :- � 

1'<30% J _ -L _ L _1 __ I _ J _ -L _ 1 __ 1_ ---J _ J _ L _ L � 
--+- 1'<40% I I I I I I I I I I I I I 
= :�� � = � =� =:= =: = � =�= := =:= �= � =� -� -= 

0>-,..80% I I I � ��� I ��if ¥ I B-�� 
- I I � � t I I I J I I I I I I - I -"' -�--'t � If- - f- -!- -I - -+ --" +- � 1- -1 - ---1 - -+ - +- - f- � 

- -I - I I I I I I I I I I I I I � 

°o�����,�,�o�,,�,,�,,�,�,�������,,���,oo 
�eraHon round 

Fig. 4. Fraction of Inauthentic Downloads with Iteration Rounds 

Figure 4 shows the fractions of inauthentic download of 
Threat Model C for each iteration round. Malicious peers try to 
get some high local trust values from good peers by providing 
authentic files in f% of all cases when selected as download 
sources or service providers. The simulation result is consistent 
with the one reported in [7], shown in Figure 1 (c). As the 
iteration round increases, the fraction of inauthentic downloads 
goes up. This indicates that when lots of dishonest ratings 
exist, the power iteration not only fails to promote the trust 
level of good participants but also starts to help in a reverse 
direction, boosting the reputation of the malicious peers such 
as nodes 2, 6 and 7 in Figure 3(c). 

Figure 5 shows how the reputation changes as the iteration 
rounds increases for selected good (G), pre-trusted (P) and 
malicious (M) peers under Threat model C, in which the 
percentage of malicious peers is set to 27%. We observe that 
when the probability f that malicious peer provides authentic 
services are increased to 30% or higher to 90%, all peers' 
reputation values change significantly except the pre-trusted 
peers. With higher f, malicious peers can obtain more positive 

rating thus gain larger reputation, and they in turn give positive 
ratings to the chain of malicious partners, which builds a high 
local trust value between a pair of malicious peers in the chain. 
With certain number of iteration rounds, the malicious peers 
can obtain more reputation via the reputation propagation. At 
the same time the reputation values of good peers drop as 
more malicious peers gain high reputation. We also observe 
that when the probability f is lower than 30%, the change 
in reputation value is slow and even when f is from 30% Or 
40%, the increasing rate of malicious peers' reputation values 
are still smaller than that of good peers. The reputation values 
of malicious peers climb evidently and are larger than that of 
good peers, when f is 90%. Several factors (e.g., the network 
size, its topological structure, percentage of malicious nodes, 
threat model) determine the exact threshold of f and the exact 
iteration round when the gap of reputation between malicious 
and good peers also becomes larger. Therefore, good tuning 
of the reputation propagation model in terms of how many 
iterations are sufficient and how to propagate trust among peers 
who have no prior transactions is critical to the efficiency and 
effectiveness of a reputation trust model. 

,. ======�==== � 

Fig. 5. The Reputation of Good, Malicious and Pre-trusted Peers as the 
Iteration Rounds Increase with Varying f 

We have analyzed and identified three types of vulnera­
bilities in EigenTrust. Before we introduce our solution for 
attack resilient trust management, EigenTrust++, in the next 
section, we would like to note that the rating density may 
also have significant influence on the effectiveness of trust 
propagation. In EigenTrust simulator, both pre-trusted peers 
and malicious peers have at least 10 initial neighbors, and 
good peers have at least 2 initial neighbors, 7 hops are set as 
search range. However, the peer to peer network is only used 
for answering queries. The trust network among all participant 
peers is established based on direct transaction ratings and 
the corresponding normalized local trust values. Thus, the 
trust propagation is conducted over the trust network. When 
this trust network is sparse, namely most peers have only 
transactions with a very small number of other peers, There 
will be a good portion of peers with zero as their reputation 
values if the iteration round is set to only a small number 
of hops. However, when the density of the trust network is 
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relatively high, if the iteration round is set to a larger value, 
then, malicious participants may gain more advantages than 
intended. 

III. EIGENTRUST++: ATTACK RESILIENT TRUST 
METRICS 

In this section, we present EigenTrust++, an attack resilient 
trust management model. It replaces three core components 
of EigenTrust to counter the vulnerabilities of EigenTrust [7]. 
First, we define a more sophisticated transaction rating formula 
to compute the local trust by introducing the total amount of 
transactions between a pair of participants as the denominator. 
Second, we replace the initial global trust formula that aggre­
gates local trust values by a feedback credibility based trust 
metric, which utilizes personalized rating similarity to aggre­
gate local trusts. Third, we replace the uniform distribution 
based trust propagation model by a differential probabilistic 
trust propagation model. We use a linear threshold to control 
how the trust propagation is conducted among peers to allow 
a participating peer to distribute more trust to its neighbor 
peers whom he or she has higher confidence based on person­
alized rating similarity. Finally, the computation complexity is 
discussed. 

A. Attack Resilient Local Trust Computation 

In EigenTrust, the local trust value that a peer i places on 
another peer j, denoted by Sij, is defined by the difference be­
tween the number of satisfactory transactions and the number 
of unsatisfactory transactions. However, this definition suffers 
from some serious vulnerability. For example, it treats the 10 
satisfactory transactions the same as 100 satisfactory and 90 
unsatisfactory transactions combined. Similarly, it treats 1000 
satisfactory and 998 unsatisfactory transactions the same as 4 
satisfactory and 2 unsatisfactory transactions, ignoring the fact 
that the former should be less trust-worthy than the latter due 
to its excessive number of unsatisfactory transactions, even 
though the absolute difference is the same. Therefore, we 
revise the transaction based local trust formula by introducing 
the total number of transactions as the denominator: 

s .. - sat( i,j)+unsat( i,j) 
{ sat(i,j) 

'J -
0 

if sat(i,j) + unsat(i,j) > 0 

otherwise 
(1) 

To facilitate the comparison among different local trust 
values, we also normalize the local trust values as follows: { maX(Sij,O) if Lm max(Sim, 0) i- 0 

c .. - '\' maX(Si=,O) 
t.J - Lm 

Pj otherwise 
(2) 

Here Pj represents the set P of pre-trusted peers, and Pj = 

1/1P1 if j E P, and Pj = 0 otherwise. 

B. Aggregating Local Trust Values Using Feedback Credibility 

On one hand we have shown in Figure 2 that EigenTrust is 
no long effective in the presence of dishonest feedbacks. On 
the other hand, dishonest feedbacks exist in many social media 
and eConunerce reputation systems, e.g. Amazon, eBay. It is 

quite possible for malicious peers to perform good transactions 
strategically to gain high reputations by collecting positive 
feedback ratings but provide dishonest feedbacks to other 
good peers. When malicious peers collude in such manner, 
EigenTrust becomes vulnerable against strategic manipulation 
(such as Threat Models C, D). It is worth noting that the 
high percentage of inauthentic downloads shown in Figure 2 is 
mainly induced by the positive ratings collected by malicious 
peers from other good or malicious peers. Therefore, how to 
differentiate the positive ratings generated by good peers from 
those generated by malicious peers is crucial. This motivates 
us to introduce the feedback similarity metric to define and 
measure the feedback credibility of a peer. This is motivated 
by the observation that two good peers may give very similar 
feedback ratings to the same common set of peers with which 
they have had interactions or transactions in the past. Two 
malicious peers, on the other hand, may give very similar 
feedback ratings to the same common set of good peers with 
which they have had transactions. On the contrary, a good 
peer and a malicious peer will give very different feedback 
ratings to the same set of peers they have interacted with. 
We define feedback credibility by utilizing such feedback 
similarity metric as a weight to the local trust value. A peer 
has high global reputation only if he has received both high 
feedback credibility and high local trust from other peers. For 
example, a local trust value that a malicious peer i places on 
a good peer j should be weighted by the feedback credibility 
of peer i. 

Given that each peer can provide feedback to other peers 
with whom he or she has had direct interaction or transaction, 
thus we can assign one feedback vector of size N for each 
peer, and N is the total number of participants in the reputation 
system. To compute the similarity between two feedback 
vectors, we can use one of the conventional vector similarity 
metrics, e.g. ,  cosine coefficient, Jaccard's coefficient, distance­
based and standard deviation-based metrics. In the first version 
of EigenTrust+ +, we compute the feedback similarity by 
utilizing the standard deviation-based method, which shows 
how much variation or "dispersion" exists from the expected 
value or the evaluated individuals in our context. The larger the 
standard deviation, the smaller the similarity, thus the feedback 
similarity between two peers u and v is defined as follows: 

sim(u, v) = 1 -

IR(u,w)1 

LWEco=nCu,v) (tr(u,w)-tr(v,w))2 

Icomn(u,v)1 

tr(u, w) = L tri(U, w)/ IR(u, w)1 
i=1 

IR(v,w)1 
tr(v, w) = L tri(V, w)/ IR(v, w)1 

i=1 

(3) 

comn( u, v) denotes the subset of the COlmnon peers that have 
had interaction with both peer u and peer v and R( u, w) 
is the number of transactions between peer u and peer w. 
The feedback similarity of any two peers depends on the 
historical local trust ratings that are received by those COlmnon 
peers. Also when two peers have had many transactions, there 
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can be many different ratings. We calculate the local trust 
for each finished transaction and average them, instead of 
one-time computation, and normalize it by the total number 
of satisfactory and unsatisfactory transactions that have been 
done between the two transacting peers. Based on the feedback 
similarity, we define the feedback credibility fij as follows: 

f 
.. - sim(i,j) 

(4) 'J - ",R( i) . ( . ) L..,m=l stm t, m 

Here R( i) is a set of the peers that have had transactions 
with peer i. Thus, we define the feedback credibility that peer 
i place on peer j, denoted by fCij, as follows: 

(5) 

Again to facilitate the comparison of different feedback cred­
ibilities, we normalize f Cij as follows: 

max(fc" ,0) 
· f '" ( f  0) --I- 0 l'J = L��)l max(fc,=,O) t m�l max Cim, r { R(i) 

o otherwise 
(6) 

Below we define the initial trust that peer i place on peer 
j, denoted by tij, by the local trust values received by peer j 
from other peers, say k, weighted by the feedback credibility 
peer i places on peer k : 

tij = L likCkj (7) 

k 
With iterative computation of global reputation, we can 

compute the (k+l)th iteration by utilizing the trust values 
computed at kth round as follows: 

t�k+l) = (1-o:)(hi.t�k) +hi.tkk) + ... +lni.t�k») +O:Pi (8) 

This formula can effectively restrain the positive ratings 
from malicious peers via similarity-based feedback credibility. 

C. Probabilistic Trust Propagation through Circle of Friends 

It is widely recognized in most social media systems that 
participating peers often do not have the same response with 
respect to the same stimuli or sensing results. The uniform 
distribution based trust propagation in EigenTrust is unrealistic 
and also vulnerable because it may lead to boost the reputation 
of malicious peers as shown in Figure 2 when dishonest 
feedbacks exist. We argue that an ideal trust mechanism 
should provide the controlled trust propagation via the circle 
of friends, which can encourage trust propagation to good 
peers and cut off the trust propagation to malicious peers. 
This requires a method to determine which next hop neighbors 
should participate in trust propagation and which should not. 
However, it is hard to provide a clean separation of good peers 
from malicious peers in the presence of different types of 
malicious behavior and attacks, such as cheating, collusion, 
camouflage and spy, etc. In this section, we describe how we 
replace the uniform distribution based trust propagation to a 
probabilistic linear threshold based model that can dynami­
cally control the trust propagation to the circle of friends based 
on both the level of local trust and the feedback similarity. 

Combining local trust and feedback similarity. Con­
cretely, in EigenTrust+ +, instead of using the local trust as 
the edge weight for trust propagation between two peers, we 
propose to use a weighted combination of local trust and 
feedback similarity, namely w( i, j) = (1 - (3) x Cji + (3 x 
sim(j, i). The proportion factor (3 is used to balance the two 
factors, with (3 probability using feedback similarity and 1-
(3 probability using local trust between two peers that have 
direct transactions. Note that the normalized local trust value 
Cij reflects the direct trust peer i has in peer j. In fact, Cij also 
indicates the confidence that peer i has in peer j. However, 
malicious peers may strategically perform good transactions to 
gain high local trust values under Threat models C and D, thus 
propagating trust based solely on local trust value may not be 
attack resilient. The intuition is to identify who are malicious 
and who are good, then cut off the positive ratings to malicious 
ones and simultaneously prevent the malicious ratings to good 
peers. For good peers, an effective way is to find those peers 
that have a similar behavior and propagate positive trust ratings 
to only those neighbor peers they have high feedback similarity 
and high local trust value. Therefore we introduce the feedback 
similarity as another parameter to help control and balance the 
trust propagation to the right peers. On the other hand, only 
relying on the feedback similarity without taking into account 
the local trust values can also lead to unwanted vulnerability. 
However, comparing with local trust we should focus more 
attention on the feedback similarity and set (3 as 0.85. 

Threshold-based Probabilistic Trust Propagation. In 
EigenTrust+ +, we requires that the edge weight must be 
subjected to LUEVW(U,V):S; 1 where V denotes the set of 
participating peers, and w( u, v) denotes the weight on the edge 
of (u, v). When given an initial active seed set S <;;; V, the 
other vertices that are not in this set would be regarded as 
inactive vertices. The trust propagation would be performed 
as follows: first, each vertex uniformly chooses a threshold 
at random from interval [0,1]. This represents the weighted 
fraction of v's neighbors that must become active in order 
for v to become active. Then, the propagation process unfolds 
deterministically in discrete steps. In step i, all its active neigh­
bors is at least ev would be activated: LUEAN(v) w( u, v) � ev 
where AN (v) denotes the set of active neighbors of vertex 
v. The thresholds ev intuitively represent the different latent 
tendencies of vertices to adopt the trust when their neighbors 
do. The fact that they are randomly selected is intended to 
model the lack of knowledge of their true values. The choice 
of the threshold can be set either by 112 or randomly selected 
from [0,1]. One way to further increase the attack resilience is 
to use statistical methods to guide the setting of this threshold. 

Consider the example displayed in Figure 6(a). Each edge 
has two weights: local trust and feedback similarity. By 
combining these two metrics, we can utilize a system supplied 
threshold to control when and how to propagate the current 
trust and to whom such trust should be propagated. Concretely, 
we set node a as the initial active node, and start the trust 
propagation step by step. When termination, assuming that 
nodes b, d and e become active, and nodes C and f are 
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inactive, because they have a small local trust rating or a low 
similarity with the active nodes. In EigenTrust++, only the 
active nodes are regarded as the circle of friends to propagate 
for node a as in Figure 6(b), which also means to cut off 
the trust propagation path to inactive nodes. There are two 
situations for consideration: first, if node a is good peer, then 
active peers may be good peers as well, so propagating trust 
to them is a rational. The inactive nodes may be malicious 
peers, discarding the propagation path to them is making 
good sense. Second, if node a is a malicious peer, the active 
nodes may be malicious peers, the malicious form a collective, 
they propagate trust to their partners. Since they cannot 
obtain reputation from the good peers, the trust propagation 
is weak among these malicious peers. The inactive may be 
good peers, and by cutting off the path from malicious peers 
helps preventing the dishonest ratings to be propagated to the 
good peers. This illustrates why EigenTrust++ threshold based 
probabilistic trust propagation method works effectively. 

(a) Initial Graph v-.rith Local Trust and Similarity (b) Controlled Trust Propagation 

Fig. 6. EigenTrust+ + Probabilistic Threshold Controlled Trust Propagation 
via Circle of Friends 

In EigenTrust++, we aggregate the local trust ratings by 
asking the acquaintances about other peers. For example, 
peer i should ask its friends, its friends' friends Cf i = 
(CT)2ct) and then propagate trust among this trusted com­
munity. The relationship of trust propagation over the transac­
tional/collaboration network can be expressed via the matrix 
C, and AC presented the activation matrix of eight. Now we 
transform the matrix C as AC below: 

al . C21, 
AC= . 

a§ . CI2 ... , 
a§ . C22, ... , 

[ a� ' Cl1' 

ar . Cnl, a� . Cn2, ... , a� . Cnn 

i _ { 1, aj -
0 , 

if i make j 
otherwise 

active 

To guarantee all the values between 0 and 1, we also 
normalize matrix AC as: { a; ,cij 

if "" ai . c· .../.. 0 
ac .. -

"" ai ·c· �m m tm r 
2) - L....Jrn m l,rn 

o otherwise 
(9) 

Therefore, we propose the following matrix expression to 
aggregate local trust: 

(lO) 

In the local trust vector It, it has its own experience in peer 
k not by asking its friends. In this instance, we should take 

both direct trust and indirect (friends') trust into account, and 
assign a proportion parameter to adjust them. 

(k+I) _ ( )( (k) (k) (k) tik - 1-')' aCil ·aclk+aci2 ·ac2k+· ·  ·+acin aCnk)+')'"acik 
(11) 

Here the proportion factor ')' is utilized to balance the direct 
and indirect trust. 

Algorithm Complexity Analysis. In EigenTrust++, the 
main overhead is the computation of global reputation us­
ing the threshold-based probabilistic trust propagation model. 
Thus the time complexity relies on the number of iterations 
for computing global reputation and the size n of the network 
(total number of participants). In EigenTrust, for each peer, 
its reputation is aggregated by simply asking other n-l peers 
and thus for n peers, the computation complexity is 0(n2) . In 
EigenTrust++, it needs 0(1) time to check whether a peer 
become active or not. A peer aggregates its reputation by 
asking only its active neighbors. The loop will continue until 
no peer can be activated by its active neighbors. Thus it will 
take no more than n runs to terminate. In EigenTrust+ +, each 
peer has an active list, so the complexity is also 0(n2) . 

IV. EXPERIMENTS AND RESULTS 

In this section, we evaluate the efficacy of EigenTrust++ 
by comparing it with EigenTrust [7] in terms of efficiency, 
effectiveness and attack resilience. To make a fair comparison 
with EigenTrust, we build a simulator on top of the simulation 
platform TMIRM simulator [12] and incorporate all four attack 
models used in EigenTrust [7] into the TMIRM simulator 
to evaluate and compare the performance of EigenTrust+ + 
with EigenTrust from different perspectives. Figure 1 shows 
the experimental results of EigenTrust, which reproduce the 
almost same experimental observations reported in the original 
EigenTrust paper [7]. 

A. Parameter Configuration 

EigenTrust++ can be seen as an attack resilient enhance­
ment of Eigentrust. To make a fair comparison with original 
EigenTrust, we set the similar configuration parameters as 
those chosen in EigenTrust experiments reported in [7], rang­
ing from network structure, file distribution to peer behavior. 
Table I shows the list of the parameters. 

The query service network is setup in a similar fashion 
as [7]. Both malicious and pre-trusted peers have lO initial 
neighbors, and good peers have 2 initial neighbors. Originally 
only pre-trusted peers have positive reputation. When a query 
is issued by a peer, it is propagated by the scoped broadcast 
mechanism with hop-count horizon over the entire network in 
the usual Gnutella way. Peers that receive the query forward 
it to the next hop peers and also check whether they have 
the requested file or not, if have, respond it. Similar to [7], 
we set 7 hops as the default response range. Furthermore, the 
number of distinct files is assigned to each peer according to 
Zipf distribution, and popular files have more copies in the 
system. On the other hand, the number of queries issued for 
different files are also based on Zipf distribution. 
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TABLE I 
SIMULATION CONFIGURATION 

number ot good peers 6U- lOU 
num er 0 pre-truste peers 

Network Structure num er 0 Inltla nelght ors 0 goo peers :l 
num er 0 Inltla nelght ors 0 rna ICIOUS peers 

num er 0 InIlIa nelg ors 0 pre-trusteo peers 
num er 0 hOpS or query process 

file distributIOn atgooo peers Zlpf distributIOn over LUOIStInCt files 
num er 0 IStInCt h es at gOOd peer m orm random Istn utIon 

top o 0 quenes ur most popu ar h es rna ICIOUS peers respono to :lU' 0 
File Distribution top o quenes or most popu ar es pre-trusted peers respono to Y o  

'10 hie categones owned by good peers In Weat model A, H and C T5% 
'10 hie categones owned by gooo peers In threat model D lU'J'0 

'10 hie categones owned by malicIOus peers In Weat mOdel A, H, D lUO'i'o 
'10 or nle categones owned by malIcIOUS peers In threat mooel L 3U% 

'10 ot download requests In whIch good peer returns InauthentIc hie 5% 
Peer Behavior Downloads source selectIon algonthm probabTIlstlc algonthm 

ro a I Ity tnat peer WIth g o a trust va ue IS se ecteo range o-IU'1o 

B, Effectiveness of Feedback Credibility 

In this section, we verify the effectiveness of EigenTrust++ 
by comparing it with EigenTrust, focusing on understanding 
the effect of feedback credibility on attack resilience of 
EigenTrust+ +, All our experiments are running simulations 
under the four threat models A, B and C and D, We compare 
EigenTrust++ feedback credibility (FC) with EigenTrust and 
non-Trust. The experimental results are depicted in Figure 
7, It is clear that the feedback credibility (FC)-based trust 
metric can constraint the trust propagation to malicious peers 
from good peers because of their limited similarity, Thus it 
outperforms EigenTrust under all the four threat models, 
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Fig. 7. Fraction of Inauthentic Downloads in the Four Threat Models 

In Threat models A and B, EigenTrust++ FC-based trust 
management offers the same level of efficiency and effective­
ness compared to the results in EienTrust. This is because the 
malicious cannot provide authentic uploading services, thus 
they cannot gain positive ratings from good peers, even they 
can obtain positive ratings from other malicious partners in 
threat model B, their reputation values are still zero since their 
partners' reputation values are zero, However, in Threat model 
C, the camouflage peers can get the positive ratings from 
good peers since they can provide authentic content services. 
Then they give high local trust values to their partners based 

on chain. Figure 7(c) shows that compared with EigenTrust, 
the FC-based trust metric in EigenTrust++ can significantly 
outperform EigenTrust (recall Figure 1). This demonstrates 
that the FC-based trust mechanism can prevent the trust 
from propagating to camouflage peers. In Threat model D, 
the type D peer can provide authentic content services for 
other peers and obtain positive ratings, by which they gain 
reputation, and then give high local trust values to all the type 
B peers. Figure 7(d) shows that the FC-powered EigenTrust++ 
mechanism obviously outperforms EigenTrust and non-trust, 
which elaborates that our FC-powered EigenTrust mechanism 
confines the trust propagation to malicious peers effectively. 

C. Effectiveness of Circle of Friends 

We evaluate the effectiveness of EigenTrust++ via the com­
parison with EigenTrust and non-trust case. Figure 8 shows the 
experimental results for the four threat models A, B, C and D 
by comparing EigenTrust++ with EigenTrust and non-Trust. 
It is clear that the probabilistic propagation (PP)-based trust 
metric can effectively constraint the trust propagation to mali­
cious peers from good peers. Thus EigenTrust++ significantly 
outperforms EigenTrust in the threat models C and D where 
malicious collectives collude while EigenTrust+ + performs 
equally well as EigenTrust in the threat models A and B. 

(a) Threat model A 
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There are a number of reasons why EigenTrust++ of­
fers remarkable efficiency and effectiveness and EigenTrust 
original does poorly (recall Figure 1) in the threat models 
C and D where the camouflage and type D peers offer 
authentic content services and thus gain positive reputations. 
First, colluding malicious peers give high local trust values to 
one another. Second, EigenTrust++ replaced the simple trust 
aggregation and trust propagation mechanisms with similarity 
based feedback credibility and threshold-based probabilistic 
propagation to prevent the trust of good peers being propagated 
to camouflage and type B peers. 

V. RELATED WORK AND CONCLUSION 

Reputation systems have been used in practice, such as 
eBay, the popular online auction system. The research on 
Reputation systems have been active in several fields, from 
distributed computing, peer to peer network computing, cloud 
computing, social network and mobile networks. In addition 
to EigenTrust [7] another piece of work that inspires this 
work is PeerTrut [18]. PeerTrust is the first to introduce the 
feedback credibility to aggregate the global reputation. For 
each rating peer, there is a corresponding rating credibility. 
In this way the ratings of malicious peer can be constrained. 
RLM [14] proposes Kalman feedback aggregation to adjust 
the affection of a malicious feedback through the parameter 
of estimated feedback variance. We have presented the design 
of EigenTrust+ +, and showed analytically and experimentally 
that EigenTrust++ is significantly more attack resilient to 
EigenTrust while preserving all the best features of EigenTrust. 
Concretely, EigenTrust++ promotes three principled design 
goals. First, the normalized local trust value of a participant 
in a network should be computed by taking into account both 
quality (satisfactory and unsatisfactory experiences) and quan­
tity of its interactions with other participants in the network, 
making it harder and costly for attackers to manipulate the trust 
model. Second, EigenTrust++ advocates a clean separation of 
the transaction or interaction quality from the feedback quality 
in reputation computation. This significantly strengthens the 
attack resilience of EigenTrust++. Third but not the least, 
EigenTrust++ enables the propagating trust computation to 
incorporate weighted probabilistic iteration, instead of uniform 
probability distribution in EigenTrust. This design principle 
can capture the non-uniformity of trust propagation and experi­
ence sharing among the circle of "friends" (connected nodes in 
the network). We conduct extensive experimental evaluation on 
EigenTrust+ +, and show that EigenTrust+ + can significantly 
outperform EigenTrust in terms of both performance and 
attack resilience in the presence of dishonest feedbacks and 
sparse network connectivity against four representative attack 
models. 
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